System Engineering and Analysis 1 (System Definitions and Concepts)

Nan Tu PhD

Spring, 2007 Tsinghua University Department of Industrial Engineering

Agenda

- Welcome
- Introduction of the instructor, TA
- Syllabus, Grading, Assignment, Exam, etc
- System Definition and Concept

Instructor: Nan Tu PhD

BS. Xi'an Jiaotong University, China **Manufacturing Engineer,** 1990 – 1993 Yunnan, China

Adv. Manufacturing Engineer, 1996 – 1998 Seagate Technology, Inc. USA

Research Assistant, 1998 – 2001 University of Minnesota

MS, PhD, University of Minnesota, USA 2002 Visiting Scholar / Researcher, 2004 Microsoft Research Asia Lecturer, 2004 Tsinghua University

Various startup activities

Email: <u>nantu@mail.tsinghua.edu.cn</u> Office: 6277-2426 Web: http://www.drtu.com

Teaching Assistant: 王培

Responsibilities:

- Home work and project questions
- Communicate with team leaders
- Help with grading

Email: pei-wang05@mails.tsinghua.edu.cn Dorm Phone: 5153-3637

Class Rules

- Attendance (you are expected in each class)
- Participation (I encourage class discussion)
- Cell phone:- turn off or use vibration
- Ethics (you are expect to produce your own work)
- Electronic version home work (no paper, no late assignment accepted, no exceptions)
- **Group Project** (make your own contribution, final report will include a task and contributor list. No free riders)

System Engineering Syllabus

Who, when, where

Schedule

Grading

Exam - 30%,

Homework / Reading assignments-20% (please submit the electronic version to 网络学堂, No paper version accepted)

Project- **50%** (work with teams, 6 person at each team, include manager, writer, researcher, designer, data collector, etc)

Please refer to the handout

System Engineering Class

- Multidisciplinary approach
- Concepts, principles, practices of systems engineering
- 1: Process of bringing systems into being
 - definition of need
 - requirements analysis,
 - functional analysis and allocation,
 - design synthesis,
 - design evaluation,
 - system validation.
- 2: Process of improving the existing systems
 - effectiveness,
 - output quality,
 - ownership cost,
 - and user satisfaction.

What Do Engineers Do?

- Engineers help to design and manufacture just about everything
 - Skyscrapers, computer chips
 - Cars, space shuttles
 - Candies to tissue papers
- Big Four Engineering Principles
 - Chemical Engineering
 - Civil Engineering
 - Electrical and Computer Engineering
 - Mechanical Engineering

Other Engineering Disciplines

- Aeronautical and Aerospace Engineering
- Agricultural Engineering
- Biomedical Engineering
- Environmental Engineering
- Industrial Engineering
- Materials Engineering
- Mining Engineering
- Nuclear Engineering
- Petroleum Engineering
- Systems Engineering

http://www.intel.com/education/design/resources/what_engineers_do.htm

What do Industrial Engineers do?

- Industrial engineers make things **work better**, more safely, and more economically.
- Improve Efficiency
- Reduce Waste
- Industrial engineering principle has been applied to many disciplines

http://www.iienet.org

What do System Engineers do?

- Responsible for bringing all the pieces of an engineering project together and making them work harmoniously
- Interdisciplinary approach to a project
- From concept to production to operation
- Consider both the business and technical needs of a project.

http://www.intel.com/education/design/resources/what_engineers_do.h tm

Who Practice System Engineering?

- Design Engineer
- Project Engineer
- Manufacturing Engineer
- Quality Engineer
- Purchasing Engineer
- Process Engineer
- Software Engineer
- System Engineer
- Industrial Engineer
- Project Manager
 - And many more

7 Steps of System Engineering

- 1. State the problem
- 2. Investigate alternatives
- 3. Model the system
- 4. Integrate
- 5. Launch the system
- 6. Assess performance
- 7. Re-evaluation

The Purpose of Systems Engineering

Reduction in **system acquisition** time Reduce risk

Reduce total-life-cycle cost

 design, development, production and / or construction, system operation and support, retirement and disposal

PC Computer System Property

What is a system?

•A regularly interacting or interdependent group of items forming a unified whole as a group of device or artificial objects or an organisation forming a network esp. for distributing something or serving as common purpose (Webster Dictionary)

•A set of connected items or devices which operate together (Cambridge Dictionary)

System Definitions and Concepts

- Components (Interconnected)
- Attributes (property of components)
- Relationships (links)

An organization system

Relationships

- Exists between **two components** only
- Formed out of imminent qualities of the components
- Connection of components is direct

System Examples

Highway Networks / Systems Manufacturing Systems (Human, machine, capital)

> Question, what kind of manufacturing are moving to China? Hint, labor, capital, capacity

Social Systems

 Relationships, Social Network, GuanXi

Software Systems

• Microsoft everywhere 🙂

Human-Made Systems

Classification of Systems

- Natural and Human-Made systems
 - Grand Canyon vs. Three Gorges Dam
- Physical and Conceptual systems
 - China vs. Map of China
- Static and Dynamic Systems
 Classroom vs. a Class
- Closed and Open Systems
 A pond vs. the sea

Grand Canyon, Arizona, USA

- 277 Miles (446 KM) Long
- 10 Miles (16 KM) Wide
- 1 Mile (1.6 km) deep
- Carved by the Colorado River
- Erosion Rate : 50 ft / one million years

American Highway System

Authorization of the Interstate Highway System: On June 29, 1956, Federal Aid-Highway Act,

- Completed by 1980s
- 42,500 miles
- No intersection, no traffic light
- 55,000 bridges
- Cost: **\$329 Billion** in 1996 dollars

http://www.publicpurpose.com/freeway1.htm

Transport System	Market Share	Mileage Share
Interstate	23.0%	1.1%
All Other Roads	76.4%	98.2%
Passenger Rail	0.6%	0.7%

California 101: The Most Scenic Highway in the US

US Highway impact on the Economy

- Less expensive
- Travel time reliability
- Broadening geographical range
- Improve inter-regional access
- Improve safety and quality of life
-

http://www.publicpurpose.com/freeway1.htm

Manufacturing System

One of the oldest business in the world

Three revolutions in human history:

- Agricultural
- Industrial
- Informational

Each revolution produces its own riches. •Industrial age riches are made from the manufacturing and its related business, like: Ford (car), Rockefeller (oil),

•New economy riches are in software and internet area, Gates (software), Yang (internet)

Trends in China

- •The manufacturing base of the world for the next 15 years
- •Growing middle class
- Urbanization

The System Engineering Tasks

State the	Design the	Produce
problem	system	documentation
Understand	Sensitivity	Lead
customer needs	analysis	teams
Discover	Assess &	Assess
requirements	manage risk	performance
Validate	Reliability	Prescribe
requirements	analysis	tests
Investigate	integrate system	Conduct
alternatives	components	reviews
Define quantitative	Design & manage	Verify
measures	interfaces	requirements
Model the	Execute configuration	Perform total
system	management	system test
Functional	Project	Re-evaluate &
decomposition	management	improve quality

System Engineering Life Cycle

The Product Life Cycle

Product, Manufacturing, and Support Life Cycle

The Product, manufacturing and support life cycle

NEED

System Engineering Influence

System Design and Development Process

The System Life Cycle

- The system life cycles for a large office building and a roll of film will be different.
 - An office building will be used continuously and modified frequently as tenants change through its life cycle.
 - A roll of film will be in storage most of its life, rarely handled or modified, and used only once.

Top - Down vs. Bottom - up

- Traditional engineering design: bottom up approach
 - Start with a set of known elements
 - Iterative design
- **System** engineering design: top down
 - Start with **requirements** (always satisfied)
- Class discussion: what are the difference between these two approaches?
 - Hint: Use examples to illustrate
 - Which one is more effectives? Why?

System Process Models

"Vee" Process Model

Spiral Process Model

Application for Systems Engineering

Class Discussion

- What are some of the differences (or similarities) between "System Engineering" and some of the more traditional disciplines such as aero, electrical, or mechanical?
- What does it mean by saying "Life Cycle"?, "Cost"? Why is it important in the decision making process?

Home Work

Reading: What is System Engineering?

Please each write a 300 words summary of the above article. Due before the next class.